
Scheduling Pre-Operative Assessment Clinic via
Answer Set Programming
Simone Caruso

1
, Giuseppe Galatà

2
, Marco Maratea

1
, Marco Mochi

1,2
and Ivan Porro

2

1DIBRIS, University of Genova, Genova, Italy
2SurgiQ srl, Italy

Abstract
The problem of scheduling Pre-Operative Assessment Clinic (PAC) consists of assigning patients to a day

for the exams needed before a surgical procedure, taking into account patients with different priority

levels, due dates, and operators availability. Realizing a satisfying schedule is of upmost importance for

a clinic, since delay in PAC can cause delay in the subsequent phases, causing a decrease in patients’

satisfaction. In this paper, we divide the problem in two sub-problems, and present the results of a

first preliminary analysis of the two problems based on Answer Set Programming (ASP). In the first

sub-problem patients are assigned to a day taking into account a default list of exams; then, the second

sub-problem, having the actual list of exams needed by each patient, use the result of the first sub-problem

to assign a starting time to each exam.

Keywords
Healthcare, Pre-Operative Assessment Clinic Scheduling, Answer Set Programming

1. Introduction

The Pre-Operative Assessment Clinic (PAC) scheduling problem is the task of assigning patients

to a day, in which the patient will be examined and prepared to a surgical operation, taking in

account patients with different priority levels, due dates, and operators availability. The PAC

consists of several exams needed by patients to ensure they are well prepared for their operation.

This allows patients to stay at home until the morning of the surgery, instead of being admitted

to the hospital one or two days before the scheduled operation, moreover, reducing waiting time

between the exams increase patient satisfaction [1] and avoid the cancellation of the surgery

[2].

The problem is divided into two sub-problems [3]: in the first sub-problem, patients are

assigned to a day taking into account a default list of exams, and the solution has to schedule

patients before their due date and prioritizing the assignments to patients with higher priority.

In the second sub-problem, the scheduler assigns a starting time to each exam needed by patients,

considering the available operators and the duration of the exams. A proper solution to the

PAC scheduling problem is vital to improve the degree of patients’ satisfaction and to reduce

surgical complications. Complex combinatorial problems, possibly involving optimizations,

IPS-2021: 9th Italian Workshop on Planning and Scheduling
" 4493864@studenti.unige.it (S. Caruso); giuseppe.galatà@surgiq.com (G. Galatà); marco.maratea@unige.it

(M. Maratea); marco.mochi@unige.it (M. Mochi); ivan.porro@surgiq.com (I. Porro)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:4493864@studenti.unige.it
mailto:giuseppe.galat�@surgiq.com
mailto:marco.maratea@unige.it
mailto:marco.mochi@unige.it
mailto:ivan.porro@surgiq.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

such as the PAC problem, are usually the target applications of AI languages such as Answer

Set Programming (ASP). Indeed ASP, thanks to its readability and availability of efficient solvers

([4, 5, 6, 7]) has been successfully employed for solving hard combinatorial problems in several

research areas, and it has been also employed to solve many scheduling problems [8, 9, 10, 11,

12, 13, 14], also in industrial contexts (see, e.g., [15, 16, 17, 18] for detailed descriptions of ASP

applications).

In this paper, we apply ASP to solve the PAC scheduling problem. In the solution of first

sub-problem, the scheduler minimizes the number of unassigned patients. Then, we propose a

solution to the second sub-problem, using as input of the problem the results of the first one and

minimizing the time each patient stays at the hospital. We have finally run a first experimental

analysis on PAC benchmarks with realistic sizes and parameters inspired from data seen in

literature, scenarios for the first sub-problem, varying the number of patients to schedule and

the available operators. Overall, results using the state-of-the-art ASP solver clingo [19] of this

preliminary analysis show that ASP is a suitable solving methodology also for PAC scheduling

problem.

2. Problem Description

Since the schedule of the PAC day must be scheduled as soon as possible, this problem is

typically divided in two phases, in the first phase, dealing with this sub-problem before the

actual PAC day, the clinics don’t know which exam each patient will require, thus, in the first

sub-problem, as typically done in hospitals, we consider that each patient requires a default

list of exams according to his specialty, the lists of exams are equal for patients requiring the

same specialty but differ among specialties, and the scheduler assigns the day of PAC without

considering the starting time of the exams. In the first sub-problem the solution assigns patients

overestimating the duration and the number of exams needed. In particular, all the optional

exams, such as exams required by smokers or patients with diabetes, are assigned to all the

patients in the first phase. The overestimation is important to have a second sub-problem that is

not unsatisfiable. Then, when the operation day is closer, the hospital knows exactly the exams

needed by each patient and can assign the starting time of each exam.

Going in more details, the first sub-problem consists of scheduling appointments in a range

of days for patients requiring surgical operation. Each patient is linked to a due date, a target

day, and to a priority level: the due date is the maximum day in which (s)he can be assigned, the

target day is the optimal day in which schedule the appointment, while the solution prioritizes

patients with higher priority level. There are several exam areas, corresponding to the locations

in which patients will be examined. Each exam area needs operators to be activated and has

a limit time of usage. Each operator can activate three different exam areas, but they can be

assigned to just one exam area for each day. The solution must assign the operators to the

exam areas, to activate them, and assign the day of PAC to patients, ensuring that the total

time of usage of each exam location is lower than its limit. Since in this first sub-problem the

list of exams needed by patients is not the final list, i.e., just the first and the last exam are the

same for every patient, and in the second sub-problem some exams could be added, the solution

schedules patients leaving some unused time to each exam area. An optimal solution minimizes

1 {x(RID,PR,TOTDUR,DAY) : day(DAY), DAY < DUEDATE} 1 :- reg(RID,PR,TARGET,TOTDUR,DUEDATE).
2 :- x(RID,_,_,DAY), exam(RID,FORNID,_), not examLoc(FORNID,_,_,DAY,_).
3 res(RID,FORNID,DAY,DUR) :- x(RID,PR,_,DAY), exam(RID,FORNID,DUR).
4 :- N1 = #count{FORNID: res(RID,FORNID,_,_)},N2 = #count{FORNID: exam(RID,FORNID,_,_)},

x(RID,_,_,_), N1 != N2.
5 :- #sum{DUR, RID: res(RID,FORNID,DAY,DUR)} > NHOURS/2, examLoc(FORNID,_,NHOURS,DAY,N).
6 :- #sum{TOTDUR, RID: x(RID,_,TOTDUR,DAY)} = M, #count{RID: x(RID,_,_,DAY)} = N, day(DAY), M >

((60*N)-(5*N*(N+1))), N>1.
7 {operator(ID, FORNID, DAY) : operators(ID, FORNID, DAY)} == NOP :- examLoc(FORNID, NOP, _,

DAY,_), res(REGID, FORNID, DAY, _).
8 :- operator(ID,FORNID1,DAY), operator(ID,FORNID2,DAY), FORNID1 < FORNID2.
9 unassignedP1(N) :- M = #count {RID: x(RID,1,_,_)}, N = totRegsP1 - M.

10 unassignedP2(N) :- M = #count {RID: x(RID,2,_,_)}, N = totRegsP2 - M.
11 unassignedP3(N) :- M = #count {RID: x(RID,3,_,_)}, N = totRegsP3 - M.
12 unassignedP4(N) :- M = #count {RID: x(RID,4,_,_)}, N = totRegsP4 - M.
13 :∼ unassignedP1(N). [N@8]
14 :∼ unassignedP2(N). [N@7]
15 :∼ unassignedP3(N). [N@6]
16 :∼ unassignedP4(N). [N@5]
17 :∼ x(RID,1,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]
18 :∼ x(RID,2,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@3,RID]
19 :∼ x(RID,3,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@2,RID]
20 :∼ x(RID,4,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@1,RID]

Figure 1: ASP encoding of the first sub-problem

the number of unassigned patients, giving priority to patients with higher priority levels, and

ties are broken by minimizing the difference between the day assigned and the target day of

each patient, giving again priority to patients with higher priority.

In the second sub-problem, patients are linked to their real exams, so the solution has to

assign the starting time of each exam, having the first sub-problem already assigned the day.

The input consists of registrations, exams needed by patients and the exam areas activated.

Exams are ordered, so the solution must assign the starting time of each exam respecting the

order and their duration, considering that each exam area can be used by one patient at a time.

Moreover, the solution minimizes the difference between the starting time of the first exam and

the last exam of each patient.

3. ASP Encoding

In this section we first present the ASP encoding for the first sub-problem, and then the main

elements of the second sub-problem, in two separate sub-sections.

3.1. ASP Encoding for the first PAC sub-problem

We assume the reader is familiar with syntax and semantics of ASP. Starting from the specifica-

tions in the previous section, here we present the ASP encoding for the first sub-problem, based

on the input language of clingo [20]. For details about syntax and semantics of ASP programs

we refer the reader to [21].

Data Model. The input data is specified by means of the following atoms:

• Instances of reg(RID,PR,TARGET,TOTDUR,DUEDATE) represent the registrations, char-

acterized by an id (RID), the priority level (PR), the ideal day in which assign the patient

(TARGET), the sum of the durations of the exams needed by the patient, and the due date

(DUEDATE).

• Instances of exam(RID,FORNID,DUR) represents the exams needed by the patients

identified by an id (RID), the exam area (FORNID), and the duration (DUR).

• Instances of examLoc(FORNID,NOP,NHOURS,DAY,N) represent the exam areas, char-

acterized by an id (FORNID), which requires (NOP) operators to be activated, which is

active for a certain value of time (NHOURS) in the day (DAY), and can be concurrently

assigned up to n (N) patients.

• Instances of operators(ID,FORNID,DAY) represent the operators, characterized by

an id (ID), who can be assigned to the exam ares (FORNID) in the day day(DAY).

• Instances of day(DAY) represent the available days.

The output is an assignment represented by atom of the form:

x(RID,PR,TOTDUR,DAY)

where the intuitive meaning is that the exams of registration with id RID and priority level PR
is assigned to the day DAY and has a total duration of his/her exams equal to TOTDUR.

Encoding. The related encoding is shown in Figure 1, and is described in the following. To

simplify the description, we denote as 𝑟𝑖 the rule appearing at line 𝑖 of Figure 1.

Rule 𝑟1 assigns registrations to a day. The assignment is made assigning a day that is before

the due date. Rule 𝑟2 checks that every registration is assigned to a day with all the exams

area needed activated. Rule 𝑟3 derives an auxiliary atom that is used later in other rules. In

particular, the new atom is used to get the duration of the visit for each patient and for each

exam area. Then, rule 𝑟4 checks that the number of needed exams and the number of res
atoms created are the same. Rule 𝑟5 is used to ensure that each exam area is used for a total

amount of time that is lower than its limit minus 30 time slots, in order to overestimate the

required time for the visits. Rule 𝑟6 is used to be sure to not assign too many patients in the

first sub-problem to a particular day. So, it overestimates the time needed by each patient. Rule

𝑟7 assigns operators to the required exam areas. Rule 𝑟8 checks that each operator is assigned

to just one exam area in every day. Rules from 𝑟9 to 𝑟12 are needed to derive auxiliary atoms

that are used later on in optimization. In particular, they are used to count how many patients

with different priorities are not be assigned to a day. Weak constraints from 𝑟13 and 𝑟16 are

used to minimize the number of unassigned registrations according to their priority. Finally,

weak constraints from 𝑟17 and 𝑟20 minimizes the difference between the assigned day and the

target day of each patient, prioritizing the difference of patients with higher priority.

3.2. ASP Encoding for the second PAC sub-problem

Data Model. The input data is the same of the first sub-problem for the atoms exam and

time, while other atoms are changed:

1 {x(RID,FORNID,ST,ST+DURATA,DAY) : examLoc(FORNID,DAY,FORNST,FORNET,_), time(ST), ST >= FORNST,
ST <= FORNET-DURATA} = 1 :- reg(RID,DAY), esame(RID,FORNID,DURATA).

2 :- x(RID,FORNID1,ST1,_,_), x(RID,FORNID2,ST2,_,_), phase(FORNID1,ORD1), phase(FORNID2,ORD2),
ORD2 < ORD1, ST1 < ST2.

3 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > 1, reg(RID,DAY), time(T).
4 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > N, examLoc(FORNID,DAY,_,_,N),

time(T).
5 :∼ reg(RID,_), x(RID,0,ST,_,_), x(RID,23,_,ET,_). [ET-ST@1, RID]

Figure 2: ASP encoding of the second sub-problem

• Instances of reg(RID,DAY) represent the registrations, characterized by an id (RID)

assigned to the day (DAY).

• Instances of examLoc(FORNID,DAY,FORNST,FORNET,N) represent the exam areas,

characterized by an id (FORNID), which in the day (DAY) has a starting time and closing

time respectively equals to (FORNST) and (FORNET), which is active for a certain value of

time (NHOURS) in the day (DAY), and can provide the exam to a value (N) of patients.

• Instances of phase(FORNID, ORD) represent the order (ORD) of the exams provided by

the exam area characterized by an id (FORNID).

The output is represented by atom of the form:

x(RID,FORNID,ST,ET,DAY)

where the intuitive meaning is that the exam of the registration with id RID is in the exam area

FORNID, starts at the starting time ST and ends at the ending time ET, on the day DAY.

Encoding. The encoding consists of the rules reported in Figure 2. Rule 𝑟1 assigns a starting

and an ending time to each exam needed by every patient, checking that the time in which is

assigned is inside the opening time of the required exam area. Rule 𝑟2 ensures that the order

between the exams is respected. Rules 𝑟3 checks that each patient is assigned to at most one

exam for every time slot. Then, rule 𝑟4 checks that each exam area provides the exam to at

most N patients for every time slot. Finally, rule 𝑟5 minimizes the difference between the ending

time of the last exam and the starting time of the first exam of each patient.

4. Experimental Results

In this section we report the results of an empirical analysis of the PAC scheduling problem via

ASP. For the first sub-problem, data have been randomly generated using parameters inspired

by literature and real world data, then the results of the first sub-problem have been used as

input for the second sub-problem. The experiments were run on a AMD Ryzen 5 2600 CPU

@ 3.40GHz with 16 GB of physical RAM. The ASP system used was clingo [20] 5.1.0, using

parameters --restart-on-model for faster optimization and --parallel-mode 8 for parallel execution.

This setting is the result of a preliminary analysis done on the same instances where we tested

also other parameters, e.g., –opt-strategy=usc for optimization. The time limit was set to

300 seconds for the first and the second sub-problems.

Table 1
Percentage of assigned patients according to their priority level

Total #Patients P1 P2 P3 P4
40 94% 85% 77% 66%
60 90% 69% 20% 13%
80 67% 22% 14% 10%

4.1. PAC benchmarks

Data are based on the sizes and parameters of a typical middle sized hospital, with 24 different

exam areas. The solution schedules patients in a range of 14 days, for each day there are 60

time slots, corresponding to 5 minute per time slot. To test scalability we generated 3 different

benchmarks of different dimensions. Each benchmark was tested 5 times with different randomly

generated input.

In particular, each patient is linked to a surgical specialty, and needs a number of exams

between 5 and 13, according to the specialty, while the duration of each exam varies between 3

and 6 time slots. The priorities of the registrations have been generated from an even distribution

of four possible values (with weights of 0.25 for registrations having priority 1, 2, 3, and 4,

respectively). For all the benchmarks, there are 24 exam areas and the operators, that are 35

in all the benchmarks, can be assigned to 3 different exam areas. So, increasing the number of

patients while maintaining fixed the number of operators, we tested different scenarios with

low, medium and high requests.

For the second sub-problem, we used the results of the first sub-problem as input. Thus, the

number of patients and the exam locations activated depend on the assignment of the solution

of the first sub-problem. Patients require all the same first and last exam, while the other exams

required by each patient are linked to an order that is randomly assigned and that must be

respected by the scheduler. In the second sub-problem clinics know the actual list of exams

needed by patients, to simulate this scenario, we randomly added and discarded the optional

exams assigned to patients in the first sub-problem. For example, optional exams are needed by

patients that are over 65 years old or smokers. There are 5 instances for each benchmark, each

corresponding to the assignments of 14 days.

4.2. Results for the first sub-problem

The first optimization criteria in the PAC scheduling sub-problem is to assign as many patients

as possible, starting from patients with higher priority. Our solution is able to assign a day to

201 patients out of 217 patients with highest priority; moreover, the scheduler is able to assign

all or all but one patients with the highest priority in 12 out of 15 instances tested. The solution

has more difficulties on the instances with 80 patients, since in this scenario the number of

operators is not enough to deal with the high number of patients.

In Table 1 are summarized the results obtained in this first sub-problem, in particular, the

table shows the average number of patients assigned with 40, 60, and 80 patients according to

their priority level.

The second optimization criteria is to have an assigned day that is as much near as possible

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2

4

6

Day

Pa
ti

en
ts

Figure 3: Number of patients assigned to each day by the scheduler with 40 patients as input

to the target day. This optimization criteria is able to assign patients with higher priority near

their target day while, for patients with lower priorities, the scheduler is not able to reach great

results. This is due to two reasons, the first one is that there are more optimization criteria

with higher priorities, then, the scheduler already tries to assign as many patients as possible,

without taking into account the target days of the patients, and the second one is that some

patients have a target day in a day without their exam locations available, so, even in an optimal

solution the assigned day to some patients wouldn’t be in the target day.

Figure 3 reports the result obtained by the scheduler with one of the instances with 40 patients

as input. What can be seen by the graph is that some patients are assigned in days 11 and 12,

while in days 9 and 10 there are no patients assigned. This can be explained by the fact that the

scheduler tries to assign as many patients as possible and do not try to assign as soon as possible

the patients. Moreover, in some days patients can not be assigned due to the unavailability

of the exam locations required. In particular, in the assignments in Figure 3, patients that are

assigned in day 11 could not be assigned in another day, because that day is the only day with

the exam locations they required.

4.3. Results for the second sub-problem

In the second sub-problem the solution assigns the starting time of each exam of the patients.

The input is taken from the results obtained in the first sub-problem. The solution minimizes

the difference between the ending time of the last exam and the starting time of the first exam.

While minimizing this value the solution tries to minimize the time spent in the hospital by all

patients. In this sub-problem the solution is able to reach an optimal solution in 13 out of 15

instances tested. While the average total duration of the exams for each patient is 37 time slots,

the solution find a schedule that allows patients to have an average time in hospital that is just

Figure 4: Representations of the assignments of the starting time of the different exam location of each
patient in a single day

38.5 time slots.

The results are obtained on average in 152, 186, 220 seconds respectively in the instances

with 40, 60 and, 80 patients. In Figure 4 there are all the starting times assigned to each patient

in a particular day. The patients that must be scheduled are the same that are assigned by the

first sub-problem in this day; the scheduler of the second sub-problem minimizes the waiting

times of each patient.

As can be seen in Figure 4 the scheduler is able to assign all the patients optimally; indeed,

all patients have no waiting time between each exam and thus the time spent in the hospital is

reduced to the minimum, while respecting the constraints of the sub-problem. As an example,

each exam location is assigned to at most one patient for each time slot.

5. Related Work

The work in [3] used two simulation models to analyse the difficulties of planning in the context

of PAC and to determine the resource needed to reduce waiting times and long access times.

The models were tested in a large university hospital and the results were validated measuring

the level of patient satisfaction. [22] used a Lean quality improvement process changing the

process and the standard routine. For example, patients were not asked to move from a room to

another for the visits, but patients were placed in a room, and remained there for the duration

of their assessment. This and other changes to the processes led to the decrease of the average

lead time for patients and to the number of patients required to return the next day to complete

the visits. [1], [2], [23], and, [24] studied the importance of implementing the PAC and the

positive results obtained by having less waiting time between the exams and for the visit to the

hospital. In particular, while different clinics follow different guidelines for PAC, implementing

it has proved to be an important tool to avoid the cancellation of the surgeries for medical

reasons and to significantly reduce the risk associated with the surgery.

ASP has been already used as a tool for solving scheduling problems [15, 25], also in the

healthcare domain [18]. In this paper, we focus on a problem that was not addressed in previous

works by using ASP.

6. Conclusions and Current Work

In this paper, we have presented a preliminary analysis of the PAC scheduling problem modeled

and solved with ASP. We started from the problem as presented in other works and utilized

parameters that can be found in other works. Results on synthetic data shows that the solution

is able, considering the different constraints, to assign a high number of patients with higher

priority. We are currently working on extending our preliminary experiments. Moreover, we

would like also to implement and test other solving procedures, e.g., [26, 27, 28, 29], considering

the relation between ASP and SAT procedures [30, 31], whose goal would be to improve the

current results. Finally, we plan to add this solution into a platform of solutions for scheduling

problems in healthcare, similarly to, e.g., [32] in the context of SMT solving.

References

[1] M. P. Harnett, D. Correll, S. Hurwitz, A. Bader, D. Hepner, Improving Efficiency and Patient

Satisfaction in a Tertiary Teaching Hospital Preoperative Clinic, Anesthesiology 112 (2010)

66–72.

[2] M. Ferschl, A. Tung, B. Sweitzer, D. Huo, D. Glick, Preoperative Clinic Visits Reduce

Operating Room Cancellations and Delays, Anesthesiology 103 (2005) 855–859.

[3] G. M. Edward, S. F. Das, S. G. Elkhuizen, P. J. M. Bakker, J. A. M. Hontelez, M. W. Hollmann,

B. Preckel, L. C. Lemaire, Simulation to analyse planning difficulties at the preoperative

assessment clinic, BJA: British Journal of Anaesthesia 100 (2008) 195–202.

[4] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, F. Ricca, Evaluation of

disjunctive programs in WASP, in: M. Balduccini, Y. Lierler, S. Woltran (Eds.), LPNMR,

volume 11481 of LNCS, Springer, 2019, pp. 241–255.

[5] F. Calimeri, M. Gebser, M. Maratea, F. Ricca, The design of the fifth answer set pro-

gramming competition, CoRR abs/1405.3710 (2014). URL: http://arxiv.org/abs/1405.3710.

arXiv:1405.3710.

[6] M. Gebser, M. Maratea, F. Ricca, The design of the seventh answer set programming

competition, in: M. Balduccini, T. Janhunen (Eds.), LPNMR, volume 10377 of Lecture Notes
in Computer Science, Springer, 2017, pp. 3–9.

[7] M. Gebser, M. Maratea, F. Ricca, The seventh answer set programming competition: Design

and results, Theory and Practice of Logic Programming 20 (2020) 176–204.

[8] F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano, N. Leone, Team-building

with answer set programming in the Gioia-Tauro seaport, Theory and Practice of Logic

Programming 12 (2012) 361–381.

http://arxiv.org/abs/1405.3710
http://arxiv.org/abs/1405.3710

[9] D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti, P. Wanko, Train scheduling with

hybrid ASP, in: LPNMR, volume 11481 of Lecture Notes in Computer Science, Springer,

2019, pp. 3–17.

[10] C. Dodaro, G. Galatà, M. K. Khan, M. Maratea, I. Porro, An ASP-based solution for operating

room scheduling with beds management, in: RuleML+RR, volume 11784 of Lecture Notes
in Computer Science, Springer, 2019, pp. 67–81.

[11] C. Dodaro, G. Galatà, M. Maratea, I. Porro, Operating room scheduling via answer set

programming, in: AI*IA, volume 11298 of LNCS, Springer, 2018, pp. 445–459.

[12] M. Alviano, C. Dodaro, M. Maratea, Nurse (re)scheduling via answer set programming,

Intelligenza Artificiale 12 (2018) 109–124.

[13] C. Dodaro, M. Maratea, Nurse scheduling via answer set programming, in: LPNMR,

volume 10377 of LNCS, Springer, 2017, pp. 301–307.

[14] M. Alviano, C. Dodaro, M. Maratea, An advanced answer set programming encoding for

nurse scheduling, in: AI*IA, volume 10640 of LNCS, Springer, 2017, pp. 468–482.

[15] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Magazine

37 (2016) 53–68.

[16] A. A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E. C. Teppan, Industrial applications

of answer set programming, KÃĳnstliche Intelligenz 32 (2018) 165–176.

[17] P. Schüller, Answer set programming in linguistics, Künstliche Intelligence

32 (2018) 151–155. URL: https://doi.org/10.1007/s13218-018-0542-z. doi:10.1007/
s13218-018-0542-z.

[18] M. Alviano, R. Bertolucci, M. Cardellini, C. Dodaro, G. Galatà, M. K. Khan, M. Maratea,

M. Mochi, V. Morozan, I. Porro, M. Schouten, Answer set programming in healthcare:

Extended overview, in: IPS and RCRA 2020, volume 2745 of CEUR Workshop Proceedings,
CEUR-WS.org, 2020. URL: http://ceur-ws.org/Vol-2745/paper7.pdf.

[19] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to

practice, Artificial Intelligence 187 (2012) 52–89.

[20] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving

made easy with clingo 5, in: ICLP (Technical Communications), volume 52 of OASICS,

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:15.

[21] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,

M. Maratea, F. Ricca, T. Schaub, ASP-Core-2 input language format, Theory and Practice

of Logic Programming 20 (2020) 294–309.

[22] C. Stark, A. Gent, L. Kirkland, Improving patient flow in pre-operative assessment, BMJ

Open Quality 4 (2015). doi:10.1136/bmjquality.u201341.w1226.

[23] H. Tariq, R. Ahmed, S. Kulkarni, S. Hanif, O. Toolsie, H. Abbas, S. Chilimuri, Development,

functioning, and effectiveness of a preoperative risk assessment clinic, Health Services

Insights 2016 (2016) 1. doi:10.4137/HSI.S40540.

[24] C. L. Woodrum, M. Wisniewski, D. J. Triulzi, J. H. Waters, L. H. Alarcon, M. H.

Yazer, The effects of a data driven maximum surgical blood ordering sched-

ule on preoperative blood ordering practices, Hematology 22 (2017) 571–577.

arXiv:https://doi.org/10.1080/10245332.2017.1318336.

[25] M. Gebser, P. Obermeier, T. Schaub, M. Ratsch-Heitmann, M. Runge, Routing driverless

transport vehicles in car assembly with answer set programming, Theory and Practice of

https://doi.org/10.1007/s13218-018-0542-z
http://dx.doi.org/10.1007/s13218-018-0542-z
http://dx.doi.org/10.1007/s13218-018-0542-z
http://ceur-ws.org/Vol-2745/paper7.pdf
http://dx.doi.org/10.1136/bmjquality.u201341.w1226
http://dx.doi.org/10.4137/HSI.S40540
http://arxiv.org/abs/https://doi.org/10.1080/10245332.2017.1318336

Logic Programming 18 (2018) 520–534. URL: https://doi.org/10.1017/S1471068418000182.

doi:10.1017/S1471068418000182.

[26] E. Giunchiglia, M. Maratea, A. Tacchella, D. Zambonin, Evaluating search heuristics and

optimization techniques in propositional satisfiability, in: R. Goré, A. Leitsch, T. Nipkow

(Eds.), International Joint Conference on Automated Reasoning (IJCAR 2001), volume 2083

of Lecture Notes in Computer Science, Springer, 2001, pp. 347–363.

[27] E. Giunchiglia, M. Maratea, A. Tacchella, Dependent and independent variables in propo-

sitional satisfiability, in: S. Flesca, S. Greco, N. Leone, G. Ianni (Eds.), JELIA, volume 2424

of Lecture Notes in Computer Science, Springer, 2002, pp. 296–307.

[28] E. Giunchiglia, M. Maratea, A. Tacchella, (In)Effectiveness of look-ahead techniques in

a modern SAT solver, in: F. Rossi (Ed.), CP, volume 2833 of Lecture Notes in Computer
Science, Springer, 2003, pp. 842–846.

[29] E. D. Rosa, E. Giunchiglia, M. Maratea, A new approach for solving satisfiability problems

with qualitative preferences, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M. Avouris

(Eds.), ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications, IOS Press,

2008, pp. 510–514.

[30] E. Giunchiglia, M. Maratea, On the Relation Between Answer Set and SAT Procedures (or,

Between cmodels and smodels), in: ICLP, volume 3668 of LNCS, Springer, 2005, pp. 37–51.

[31] E. Giunchiglia, N. Leone, M. Maratea, On the relation among answer set solvers, Ann.

Math. Artif. Intell. 53 (2008) 169–204.

[32] A. Armando, C. Castellini, E. Giunchiglia, M. Idini, M. Maratea, TSAT++: an open platform

for satisfiability modulo theories, Electronic Notes in Theoretical Computer Science 125

(2005) 25–36.

https://doi.org/10.1017/S1471068418000182
http://dx.doi.org/10.1017/S1471068418000182

	1 Introduction
	2 Problem Description
	3 ASP Encoding
	3.1 ASP Encoding for the first PAC sub-problem
	3.2 ASP Encoding for the second PAC sub-problem

	4 Experimental Results
	4.1 PAC benchmarks
	4.2 Results for the first sub-problem
	4.3 Results for the second sub-problem

	5 Related Work
	6 Conclusions and Current Work

